A molecular and cellular perspective on human brain evolution and tempo

The evolution of the modern human brain was accompanied by distinct molecular and cellular specializations, which underpin our diverse cognitive abilities but also increase our susceptibility to neurological diseases. These features, some specific to humans and others shared with related species, manifest during different stages of brain development. In this multi-stage process, neural stem cells proliferate to produce a large and diverse progenitor pool, giving rise to excitatory or inhibitory neurons that integrate into circuits during further maturation. This process unfolds over varying time scales across species and has progressively become slower in the human lineage, with differences in tempo correlating with differences in brain size, cell number and diversity, and connectivity. Here we introduce the terms ‘bradychrony’ and ‘tachycrony’ to describe slowed and accelerated developmental tempos, respectively. We review how recent technical advances across disciplines, including advanced engineering of in vitro models, functional comparative genetics and high-throughput single-cell profiling, are leading to a deeper understanding of how specializations of the human brain arise during bradychronic neurodevelopment. Emerging insights point to a central role for genetics, gene-regulatory networks, cellular innovations and developmental tempo, which together contribute to the establishment of human specializations during various stages of neurodevelopment and at different points in evolution.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

cancel any time

Subscribe to this journal

Receive 51 print issues and online access

196,21 € per year

only 3,85 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Cortical cellular diversity and development in schizophrenia

Article 13 May 2020

Human neuronal maturation comes of age: cellular mechanisms and species differences

Article 23 November 2023

Indirect neurogenesis in space and time

Article 01 July 2024

References

  1. Lage, C. A., Wolmarans, D. W. & Mograbi, D. C. An evolutionary view of self-awareness. Behav. Process.194, 104543 (2022). ArticleGoogle Scholar
  2. Roth, G. & Dicke, U. Origin and evolution of human cognition. Prog. Brain Res.250, 285–316 (2019). ArticlePubMedGoogle Scholar
  3. Mouritsen, H., Heyers, D. & Güntürkün, O. The neural basis of long-distance navigation in birds. Annu. Rev. Physiol.78, 133–154 (2015). ArticlePubMedGoogle Scholar
  4. Jarvis, E. D. Evolution of vocal learning and spoken language. Science366, 50–54 (2019). ArticleADSCASPubMedGoogle Scholar
  5. Whiten, A., Hinde, R. A., Laland, K. N. & Stringer, C. B. Culture evolves. Philos. Trans. R. Soc. B366, 938–948 (2011). ArticleGoogle Scholar
  6. Varki, A. & Gagneux, P. in On Human Nature: Biology, Psychology, Ethics, Politics, and Religion (eds Tibayrenc, M. et al.) 151–160 (Academic, 2017).
  7. Pattabiraman, K., Muchnik, S. K. & Sestan, N. The evolution of the human brain and disease susceptibility. Curr. Opin. Genet. Dev.65, 91–97 (2020). ArticleCASPubMedGoogle Scholar
  8. Martinez, P. & Sprecher, S. G. Of circuits and brains: the origin and diversification of neural architectures. Front. Ecol. Evol.8, 82 (2020). ArticleGoogle Scholar
  9. Martín-Durán, J. M. & Hejnol, A. A developmental perspective on the evolution of the nervous system. Dev. Biol.475, 181–192 (2019). ArticlePubMedGoogle Scholar
  10. Vallender, E. J. Genetics of human brain evolution. Prog. Brain Res.250, 3–39 (2019). ArticlePubMedGoogle Scholar
  11. Uzquiano, A. & Arlotta, P. Brain organoids: the quest to decipher human-specific features of brain development. Curr. Opin. Genet. Dev.75, 101955 (2022). ArticleCASPubMedGoogle Scholar
  12. Vinsland, E. & Linnarsson, S. Single-cell RNA-sequencing of mammalian brain development: insights and future directions. Development149, dev200180 (2022). ArticleCASPubMedGoogle Scholar
  13. Kelley, K. W. & Pașca, S. P. Human brain organogenesis: toward a cellular understanding of development and disease. Cell185, 42–61 (2022). ArticleCASPubMedGoogle Scholar
  14. Perkel, J. M. Single-cell analysis enters the multiomics age. Nature595, 614–616 (2021). ArticleADSCASGoogle Scholar
  15. Chiaradia, I. & Lancaster, M. A. Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. Nat. Neurosci.23, 1496–1508 (2020). ArticleCASPubMedGoogle Scholar
  16. Benito-Kwiecinski, S. & Lancaster, M. A. Brain organoids: human neurodevelopment in a dish. Cold Spring Harb. Perspect. Biol.12, a035709 (2019). ArticleGoogle Scholar
  17. Pollen, A. A. et al. Establishing cerebral organoids as models of human-specific brain evolution. Cell176, 743–756.e17 (2019). ArticleCASPubMedPubMed CentralGoogle Scholar
  18. Jerison, H. J. The theory of encephalization. Ann. NY Acad. Sci.299, 146–160 (1977). ArticleADSCASPubMedGoogle Scholar
  19. Beaudet, A., Du, A. & Wood, B. Evolution of the modern human brain. Prog. Brain Res.250, 219–250 (2019). ArticlePubMedGoogle Scholar
  20. Du, A. et al. Pattern and process in hominin brain size evolution are scale-dependent. Proc. R. Soc. B285, 20172738 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  21. Tilot, A. K. et al. The evolutionary history of common genetic variants influencing human cortical surface area. Cereb. Cortex31, 1873–1887 (2020). ArticlePubMed CentralGoogle Scholar
  22. Finlay, B. L. & Darlington, R. B. Linked regularities in the development and evolution of mammalian brains. Science268, 1578–1584 (1995). ArticleADSCASPubMedGoogle Scholar
  23. Finlay, B. L., Darlington, R. B. & Nicastro, N. Developmental structure in brain evolution. Behav. Brain Sci.24, 263–278 (2001). ArticleCASPubMedGoogle Scholar
  24. Montgomery, S. H., Mundy, N. I. & Barton, R. A. Brain evolution and development: adaptation, allometry and constraint. Proc. R. Soc. B283, 20160433 (2016). ArticlePubMedPubMed CentralGoogle Scholar
  25. Dunbar, R. I. M. Neocortex size as a constraint on group size in primates. J. Hum. Evol.22, 469–493 (1992). ArticleGoogle Scholar
  26. Dicke, U. & Roth, G. Neuronal factors determining high intelligence. Philos. Trans. R. Soc B371, 20150180 (2016). ArticleGoogle Scholar
  27. Herculano-Houzel, S. The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci.3, 31 (2009). ArticlePubMedPubMed CentralGoogle Scholar
  28. Azevedo, F. A. C. et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled‐up primate brain. J. Comp. Neurol.513, 532–541 (2009). ArticlePubMedGoogle Scholar
  29. Gómez-Robles, A., Hopkins, W. D., Schapiro, S. J. & Sherwood, C. C. Relaxed genetic control of cortical organization in human brains compared with chimpanzees. Proc. Natl Acad. Sci. USA112, 14799–14804 (2015). ArticleADSPubMedPubMed CentralGoogle Scholar
  30. Hill, J. et al. Similar patterns of cortical expansion during human development and evolution. Proc. Natl Acad. Sci. USA107, 13135–13140 (2010). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  31. Arnsten, A. F. T. Stress signalling pathways that impair prefrontal cortex structure and function. Nat. Rev. Neurosci.10, 410–422 (2009). ArticleCASPubMedPubMed CentralGoogle Scholar
  32. Holmes, A. J. et al. Prefrontal functioning during context processing in schizophrenia and major depression: An event-related fMRI study. Schizophr. Res.76, 199–206 (2005). ArticlePubMedGoogle Scholar
  33. Rougier, N. P., Noelle, D. C., Braver, T. S., Cohen, J. D. & O’Reilly, R. C. Prefrontal cortex and flexible cognitive control: rules without symbols. Proc. Natl Acad. Sci. USA102, 7338–7343 (2005). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  34. León, M. S. Pde et al. The primitive brain of early Homo. Science372, 165–171 (2021). ArticleADSGoogle Scholar
  35. Sereno, M. I. et al. The human cerebellum has almost 80% of the surface area of the neocortex. Proc. Natl Acad. Sci. USA117, 19538–19543 (2020). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  36. Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C. & Yeo, B. T. T. The organization of the human cerebellum estimated by intrinsic functional connectivity. J. Neurophysiol.106, 2322–2345 (2011). ArticlePubMedPubMed CentralGoogle Scholar
  37. Balsters, J. H. et al. Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules. Neuroimage49, 2045–2052 (2010). ArticleCASPubMedGoogle Scholar
  38. Sultan, F. & Braitenberg, V. Shapes and sizes of different mammalian cerebella. A study in quantitative comparative neuroanatomy. J. Hirnforsch.34, 79–92 (1993). CASPubMedGoogle Scholar
  39. Zhang, K. & Sejnowski, T. J. A universal scaling law between gray matter and white matter of cerebral cortex. Proc. Natl Acad. Sci. USA97, 5621–5626 (2000). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  40. Schoenemann, P. T., Sheehan, M. J. & Glotzer, L. D. Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nat. Neurosci.8, 242–252 (2005). A cross-species analysis of 11 primate species, including human and other great apes, shows a profound disproportionate increase of relative prefrontal white matter volume in humans. ArticleCASPubMedGoogle Scholar
  41. Donahue, C. J., Glasser, M. F., Preuss, T. M., Rilling, J. K. & Essen, D. C. V. Quantitative assessment of prefrontal cortex in humans relative to nonhuman primates. Proc. Natl Acad. Sci. USA115, E5183–E5192 (2018). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  42. von Economo, C. Cellular Structure of the Human Cerebral Cortex (Karger, 2009).
  43. Preuss, T. M. & Wise, S. P. Evolution of prefrontal cortex. Neuropsychopharmacology47, 3–19 (2022). ArticlePubMedGoogle Scholar
  44. Hutsler, J. J., Lee, D.-G. & Porter, K. K. Comparative analysis of cortical layering and supragranular layer enlargement in rodent carnivore and primate species. Brain Res.1052, 71–81 (2005). ArticleCASPubMedGoogle Scholar
  45. Balaram, P. & Kaas, J. H. Towards a unified scheme of cortical lamination for primary visual cortex across primates: insights from NeuN and vGLUT2 immunoreactivity. Front. Neuroanat.8, 81 (2014). ArticlePubMedPubMed CentralGoogle Scholar
  46. Sousa, A. Ade. et al. Comparative cytoarchitectural analyses of striate and extrastriate areas in hominoids. Cereb. Cortex20, 966–981 (2010). Refs. 44 and 46 show that a relative increase of supragranular layers is observed in great apes compared with other primates, but is not further increased in humans compared with other apes. ArticlePubMedGoogle Scholar
  47. Berg, J. et al. Human neocortical expansion involves glutamatergic neuron diversification. Nature598, 151–158 (2021). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  48. Loomba, S. et al. Connectomic comparison of mouse and human cortex. Science377, eabo0924 (2022). ArticleCASPubMedGoogle Scholar
  49. Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature598, 111–119 (2021). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  50. Jorstad, N. L. et al. Comparative transcriptomics reveals human-specific cortical features. Science382, eade9516 (2023). ArticleCASPubMedPubMed CentralGoogle Scholar
  51. Krienen, F. M. et al. Innovations present in the primate interneuron repertoire. Nature586, 262–269 (2020). This study shows that the ivy cell, an interneuron subtype, is present in the cortex and hippocampus in primates, but localizes to the hippocampus only in mice and ferrets. ArticleADSCASPubMedPubMed CentralGoogle Scholar
  52. Cerminara, N. L., Lang, E. J., Sillitoe, R. V. & Apps, R. Redefining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits. Nat. Rev. Neurosci.16, 79–93 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  53. Kozareva, V. et al. A transcriptomic atlas of mouse cerebellar cortex comprehensively defines cell types. Nature598, 214–219 (2021). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  54. Haldipur, P. et al. Spatiotemporal expansion of primary progenitor zones in the developing human cerebellum. Science366, 454–460 (2019). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  55. Falcone, C. et al. Redefining varicose projection astrocytes in primates. Glia70, 145–154 (2022). ArticlePubMedGoogle Scholar
  56. Geirsdottir, L. et al. Cross-species single-cell analysis reveals divergence of the primate microglia program. Cell179, 1609–1622.e16 (2019). ArticleCASPubMedGoogle Scholar
  57. Masuda, T. et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature566, 388–392 (2019). ArticleADSCASPubMedGoogle Scholar
  58. Berto, S. et al. Accelerated evolution of oligodendrocytes in the human brain. Proc. Natl Acad. Sci. USA116, 24334–24342 (2019). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  59. Oberheim, N. A. et al. Uniquely hominid features of adult human astrocytes. J. Neurosci.29, 3276–3287 (2009). ArticleCASPubMedPubMed CentralGoogle Scholar
  60. Caglayan, E. et al. Molecular features driving cellular complexity of human brain evolution. Nature620, 145–153 (2023). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  61. Fang, R. et al. Conservation and divergence of cortical cell organization in human and mouse revealed by MERFISH. Science377, 56–62 (2022). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  62. Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature573, 61–68 (2019). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  63. Sousa, A. M. M. et al. Molecular and cellular reorganization of neural circuits in the human lineage. Science358, 1027–1032 (2017). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  64. Schmitz, M. T. et al. The development and evolution of inhibitory neurons in primate cerebrum. Nature603, 871–877 (2022). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  65. Ardesch, D. J. et al. Evolutionary expansion of connectivity between multimodal association areas in the human brain compared with chimpanzees. Proc. Natl Acad. Sci. USA116, 201818512 (2019). ArticleGoogle Scholar
  66. Bianchi, S. et al. Dendritic morphology of pyramidal neurons in the chimpanzee neocortex: regional specializations and comparison to humans. Cereb. Cortex23, 2429–2436 (2013). This study demonstrates that pyramidal neurons in different neocortical structures exhibit increased dendritic arborization and synapse number per neuron in humans compared with chimpanzees. ArticlePubMedGoogle Scholar
  67. Mohan, H. et al. Dendritic and axonal architecture of individual pyramidal neurons across layers of adult human neocortex. Cereb. Cortex25, 4839–4853 (2015). ArticlePubMedPubMed CentralGoogle Scholar
  68. Elston, G. N. et al. Specializations of the granular prefrontal cortex of primates: implications for cognitive processing. Anat. Rec. A288A, 26–35 (2006). ArticleGoogle Scholar
  69. Elston, G. N., Benavides-Piccione, R. & DeFelipe, J. A study of pyramidal cell structure in the cingulate cortex of the macaque monkey with comparative notes on inferotemporal and primary visual cortex. Cereb. Cortex15, 64–73 (2005). ArticlePubMedGoogle Scholar
  70. Elston, G. N., Benavides-Piccione, R. & DeFelipe, J. The pyramidal cell in cognition: a comparative study in human and monkey. J. Neurosci.21, RC163 (2001). ArticleCASPubMedPubMed CentralGoogle Scholar
  71. Jacobs, B. et al. Regional dendritic and spine variation in human cerebral cortex: a quantitative Golgi study. Cereb. Cortex11, 558–571 (2001). ArticleCASPubMedGoogle Scholar
  72. Koopmans, F. et al. Comparative hippocampal synaptic proteomes of rodents and primates: differences in neuroplasticity-related proteins. Front. Mol. Neurosci.11, 364 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  73. Beaulieu-Laroche, L. et al. Allometric rules for mammalian cortical layer 5 neuron biophysics. Nature600, 274–278 (2021). ArticleADSCASPubMedGoogle Scholar
  74. Gidon, A. et al. Dendritic action potentials and computation in human layer 2/3 cortical neurons. Science367, 83–87 (2020). ArticleADSCASPubMedGoogle Scholar
  75. Beaulieu-Laroche, L. et al. Enhanced dendritic compartmentalization in human cortical neurons. Cell175, 643–651.e14 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  76. Eyal, G. et al. Unique membrane properties and enhanced signal processing in human neocortical neurons. eLife5, e16553 (2016). ArticlePubMedPubMed CentralGoogle Scholar
  77. Lee, B. R. et al. Signature morphoelectric properties of diverse GABAergic interneurons in the human neocortex. Science382, eadf6484 (2023). ArticleCASPubMedGoogle Scholar
  78. Chartrand, T. et al. Morphoelectric and transcriptomic divergence of the layer 1 interneuron repertoire in human versus mouse neocortex. Science382, eadf0805 (2023). ArticleCASPubMedGoogle Scholar
  79. Molnár, G. et al. Human pyramidal to interneuron synapses are mediated by multi-vesicular release and multiple docked vesicles. eLife5, e18167 (2016). ArticlePubMedPubMed CentralGoogle Scholar
  80. Libé-Philippot, B. et al. LRRC37B is a species-specific regulator of voltage-gated channels and excitability in human cortical neurons. Cell186, 5766–5783.e25 (2023). ArticlePubMedPubMed CentralGoogle Scholar
  81. Masoli, S. et al. Human outperform mouse Purkinje cells in dendritic complexity and computational capacity. Commun. Biol.7, 5 (2024). This comparative study shows that Purkinje cells exhibit increased dendritic arborization and spine numbers in humans compared with rodents. ArticleCASPubMedPubMed CentralGoogle Scholar
  82. DeSilva, J. & Lesnik, J. Chimpanzee neonatal brain size: Implications for brain growth in Homo erectus. J. Hum. Evol.51, 207–212 (2006). ArticlePubMedGoogle Scholar
  83. DeSilva, J. M. & Lesnik, J. J. Brain size at birth throughout human evolution: a new method for estimating neonatal brain size in hominins. J. Hum. Evol.55, 1064–1074 (2008). ArticlePubMedGoogle Scholar
  84. Sakai, T. et al. Differential prefrontal white matter development in chimpanzees and humans. Curr. Biol.22, 171 (2012). ArticleCASGoogle Scholar
  85. Kollmann, J. Das Ueberwintern von europäischen Frosch- und Tritonlarven und die Umwandlung des mexikanischen Axolotl. Verh. Naturforsch. Ges. Basel7, 387–398 (1885). Google Scholar
  86. Berry, R. J. & Bronson, F. H. Life history and bioeconomy of the house mouse. Biol. Rev.67, 519–550 (1992). ArticleCASPubMedGoogle Scholar
  87. Guyer, A. E., Pérez‐Edgar, K. & Crone, E. A. Opportunities for neurodevelopmental plasticity from infancy through early adulthood. Child Dev.89, 687–697 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  88. Libé-Philippot, B. & Vanderhaeghen, P. Cellular and molecular mechanisms linking human cortical development and evolution. Annu Rev Genet55, 555–581 (2021). ArticlePubMedGoogle Scholar
  89. Villalba, A., Götz, M. & Borrell, V. The regulation of cortical neurogenesis. Curr. Top. Dev. Biol.142, 1–66 (2020). CASPubMedGoogle Scholar
  90. Miller, D. J., Bhaduri, A., Sestan, N. & Kriegstein, A. Shared and derived features of cellular diversity in the human cerebral cortex. Curr. Opin. Neurobiol.56, 117–124 (2019). ArticleCASPubMedPubMed CentralGoogle Scholar
  91. Stepien, B. K., Vaid, S. & Huttner, W. B. Length of the neurogenic period—a key determinant for the generation of upper-layer neurons during neocortex development and evolution. Front. Cell Dev. Biol.9, 676911 (2021). ArticlePubMedPubMed CentralGoogle Scholar
  92. Silbereis, J. C., Pochareddy, S., Zhu, Y., Li, M. & Sestan, N. The cellular and molecular landscapes of the developing human central nervous system. Neuron89, 248–268 (2016). ArticleCASPubMedPubMed CentralGoogle Scholar
  93. Haubensak, W., Attardo, A., Denk, W. & Huttner, W. B. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc. Natl Acad. Sci. USA101, 3196–3201 (2004). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  94. Sakai, T. et al. Fetal brain development in chimpanzees versus humans. Curr. Biol.22, R791–R792 (2012). ArticleCASPubMedGoogle Scholar
  95. Otani, T., Marchetto, M. C., Gage, F. H., Simons, B. D. & Livesey, F. J. 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size. Cell Stem Cell18, 467–480 (2016). ArticleCASPubMedPubMed CentralGoogle Scholar
  96. Wang, X., Tsai, J.-W., LaMonica, B. & Kriegstein, A. R. A new subtype of progenitor cell in the mouse embryonic neocortex. Nat. Neurosci.14, 555–561 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  97. Hansen, D. V., Lui, J. H., Parker, P. R. L. & Kriegstein, A. R. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature464, 554–561 (2010). ArticleADSCASPubMedGoogle Scholar
  98. Kanton, S. et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature574, 418–422 (2019). ArticleADSCASPubMedGoogle Scholar
  99. Mora-Bermúdez, F. et al. Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development. eLife5, e18683 (2016). ArticlePubMedPubMed CentralGoogle Scholar
  100. Benito-Kwiecinski, S. et al. An early cell shape transition drives evolutionary expansion of the human forebrain. Cell184, 2084–2102.e19 (2021). ArticleCASPubMedPubMed CentralGoogle Scholar
  101. Taverna, E., Götz, M. & Huttner, W. B. The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex. Annu. Rev. Cell Dev. Biol.30, 465–502 (2014). ArticleCASPubMedGoogle Scholar
  102. O’Rahilly, R. & Müller, F. Developmental stages in human embryos: revised and new measurements. Cells Tissues Organs192, 73–84 (2010). ArticlePubMedGoogle Scholar
  103. Rakic, P. Specification of cerebral cortical areas. Science241, 170–176 (1988). ArticleADSCASPubMedGoogle Scholar
  104. Davignon, R. W., Parker, R. M. & Hendrickx, A. G. Staging of the early embryonic brain in the baboon (Papio cynocephalus) and rhesus monkey (Macaca mulatta). Anat. Embryol.159, 317–334 (1980). ArticleCASGoogle Scholar
  105. Pryor, S. E., Massa, V., Savery, D., Greene, N. D. E. & Copp, A. J. Convergent extension analysis in mouse whole embryo culture. Methods Mol. Biol.839, 133–146 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  106. Ziffra, R. S. et al. Single-cell epigenomics reveals mechanisms of human cortical development. Nature598, 205–213 (2021). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  107. Collins, C. E., Airey, D. C., Young, N. A., Leitch, D. B. & Kaas, J. H. Neuron densities vary across and within cortical areas in primates. Proc. Natl Acad. Sci. USA107, 15927–15932 (2010). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  108. Smart, I. H. M., Dehay, C., Giroud, P., Berland, M. & Kennedy, H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex12, 37–53 (2002). ArticlePubMedGoogle Scholar
  109. Krienen, F. M. et al. A marmoset brain cell census reveals regional specialization of cellular identities. Sci. Adv.9, eadk3986 (2023). ArticleCASPubMedPubMed CentralGoogle Scholar
  110. Ma, T. et al. Subcortical origins of human and monkey neocortical interneurons. Nat. Neurosci.16, 1588–1597 (2013). ArticleCASPubMedGoogle Scholar
  111. Jakovcevski, I., Mayer, N. & Zecevic, N. Multiple origins of human neocortical interneurons are supported by distinct expression of transcription factors. Cereb. Cortex21, 1771–1782 (2011). ArticlePubMedGoogle Scholar
  112. Yu, X. & Zecevic, N. Dorsal radial glial cells have the potential to generate cortical interneurons in human but not in mouse brain. J. Neurosci.31, 2413–2420 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  113. Petanjek, Z., Berger, B. & Esclapez, M. Origins of cortical GABAergic neurons in the cynomolgus monkey. Cereb. Cortex19, 249–262 (2008). ArticlePubMedPubMed CentralGoogle Scholar
  114. Letinic, K., Zoncu, R. & Rakic, P. Origin of GABAergic neurons in the human neocortex. Nature417, 645–649 (2002). ArticleADSCASPubMedGoogle Scholar
  115. Delgado, R. N. et al. Individual human cortical progenitors can produce excitatory and inhibitory neurons. Nature601, 397–403 (2022). ArticleADSCASPubMedGoogle Scholar
  116. Hansen, D. V. et al. Non-epithelial stem cells and cortical interneuron production in the human ganglionic eminences. Nat. Neurosci.16, 1576–1587 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  117. Bandler, R. C. et al. Single-cell delineation of lineage and genetic identity in the mouse brain. Nature601, 404–409 (2022). ArticleADSCASPubMedGoogle Scholar
  118. Chung, C. et al. Cell-type-resolved mosaicism reveals clonal dynamics of the human forebrain. Nature629, 384–392 (2024). ArticleCASPubMedGoogle Scholar
  119. Bakken, T. E. et al. Single-cell and single-nucleus RNA-seq uncovers shared and distinct axes of variation in dorsal LGN neurons in mice, non-human primates, and humans. eLife10, e64875 (2021). ArticleCASPubMedPubMed CentralGoogle Scholar
  120. Arcelli, P., Frassoni, C., Regondi, M. C., Biasi, S. D. & Spreafico, R. GABAergic neurons in mammalian thalamus: a marker of thalamic complexity? Brain Res. Bull.42, 27–37 (1997). ArticleCASPubMedGoogle Scholar
  121. Jager, P. et al. Dual midbrain and forebrain origins of thalamic inhibitory interneurons. eLife10, e59272 (2021). ArticleCASPubMedPubMed CentralGoogle Scholar
  122. Jager, P. et al. Tectal-derived interneurons contribute to phasic and tonic inhibition in the visual thalamus. Nat. Commun.7, 13579 (2016). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  123. Letinic, K. & Rakic, P. Telencephalic origin of human thalamic GABAergic neurons. Nat. Neurosci.4, 931–936 (2001). ArticleCASPubMedGoogle Scholar
  124. Rakić, P. & Sidman, R. L. Telencephalic origin of pulvinar neurons in the fetal human brain. Z. Anat. Entwickl. Gesch.129, 53–82 (1969). ArticleGoogle Scholar
  125. Wallace, J. L. & Pollen, A. A. Human neuronal maturation comes of age: cellular mechanisms and species differences. Nat. Rev. Neurosci.25, 7–29 (2024). ArticleCASPubMedGoogle Scholar
  126. Vanderhaeghen, P. & Polleux, F. Developmental mechanisms underlying the evolution of human cortical circuits. Nat. Rev. Neurosci.24, 213–232 (2023). ArticleCASPubMedPubMed CentralGoogle Scholar
  127. Revah, O. et al. Maturation and circuit integration of transplanted human cortical organoids. Nature610, 319–326 (2022). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  128. Giandomenico, S. L. et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output. Nat. Neurosci.22, 669–679 (2019). ArticleCASPubMedPubMed CentralGoogle Scholar
  129. Linaro, D. et al. Xenotransplanted human cortical neurons reveal species-specific development and functional integration into mouse visual circuits. Neuron104, 972–986.e6 (2019). ArticleCASPubMedPubMed CentralGoogle Scholar
  130. Zhu, Y. et al. Spatiotemporal transcriptomic divergence across human and macaque brain development. Science362, eaat8077 (2018). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  131. Wang, L. et al. A cross-species proteomic map reveals neoteny of human synapse development. Nature622, 112–119 (2023). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  132. Wildenberg, G., Li, H. & Kasthuri, N. The development of synapses in mouse and macaque primary sensory cortices. Preprint at bioRxivhttps://doi.org/10.1101/2023.02.15.528564 (2023).
  133. Huttenlocher, P. R. & Dabholkar, A. S. Regional differences in synaptogenesis in human cerebral cortex. J. Comp. Neurol.387, 167–178 (1997). ArticleCASPubMedGoogle Scholar
  134. Rakic, P., Bourgeois, J.-P., Eckenhoff, M. F., Zecevic, N. & Goldman-Rakic, P. S. Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science232, 232–235 (1986). ArticleADSCASPubMedGoogle Scholar
  135. Zeiss, C. J. Comparative milestones in rodent and human postnatal central nervous system development. Toxicol. Pathol.49, 1368–1373 (2021). ArticlePubMedGoogle Scholar
  136. Meng, Y., Jiang, J., Bachevalier, J., Zhang, X. & Chan, A. W. S. Developmental whole brain white matter alterations in transgenic Huntington’s disease monkey. Sci. Rep.7, 379 (2017). ArticleADSPubMedPubMed CentralGoogle Scholar
  137. Sakai, T. et al. Developmental trajectory of the corpus callosum from infancy to the juvenile stage: comparative MRI between chimpanzees and humans. PLoS ONE12, e0179624 (2017). ArticlePubMedPubMed CentralGoogle Scholar
  138. Semple, B. D., Blomgren, K., Gimlin, K., Ferriero, D. M. & Noble-Haeusslein, L. J. Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog. Neurobiol.106, 1–16 (2013). ArticlePubMedGoogle Scholar
  139. Bourgeois, J. & Rakic, P. Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. J. Neurosci.13, 2801–2820 (1993). ArticleCASPubMedPubMed CentralGoogle Scholar
  140. De Felipe, J., Marco, P., Fairén, A. & Jones, E. G. Inhibitory synaptogenesis in mouse somatosensory cortex. Cereb. Cortex7, 619–634 (1997). ArticleCASPubMedGoogle Scholar
  141. Schörnig, M. et al. Comparison of induced neurons reveals slower structural and functional maturation in humans than in apes. eLife10, e59323 (2021). ArticlePubMedPubMed CentralGoogle Scholar
  142. Lindhout, F. W. et al. Quantitative mapping of transcriptome and proteome dynamics during polarization of human iPSC-derived neurons. eLife9, e58124 (2020). This study reports the identification of an intermediate axon developmental stage in human neurons. ArticleCASPubMedPubMed CentralGoogle Scholar
  143. Dotti, C., Sullivan, C. & Banker, G. The establishment of polarity by hippocampal neurons in culture. J. Neurosci.8, 1454–1468 (1988). ArticleCASPubMedPubMed CentralGoogle Scholar
  144. Lindhout, F. W. et al. Centrosome‐mediated microtubule remodeling during axon formation in human iPSC‐derived neurons. EMBO J.40, e106798 (2021). This study shows that centrosomes modulate axon development in human neurons, with a human-specific localization of axon initial segment protein TRIM46 to centrosomes prior to axon formation. ArticleCASPubMedPubMed CentralGoogle Scholar
  145. Bianchi, S. et al. Synaptogenesis and development of pyramidal neuron dendritic morphology in the chimpanzee neocortex resembles humans. Proc. Natl Acad. Sci. USA110, 10395–10401 (2013). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  146. Rayon, T. et al. Species-specific pace of development is associated with differences in protein stability. Science369, eaba7667 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
  147. Lázaro, J. et al. A stem cell zoo uncovers intracellular scaling of developmental tempo across mammals. Cell Stem Cell30, 938–949.e7 (2023). ArticlePubMedPubMed CentralGoogle Scholar
  148. Matsuda, M. et al. Species-specific segmentation clock periods are due to differential biochemical reaction speeds. Science369, 1450–1455 (2020). ArticleADSCASPubMedGoogle Scholar
  149. Iwata, R. et al. Mitochondria metabolism sets the species-specific tempo of neuronal development. Science379, eabn4705 (2023). In vitro experiments show that mitochondrial metabolism regulates species-specific neurodevelopmental tempo. ArticleCASPubMedGoogle Scholar
  150. Ciceri, G. et al. An epigenetic barrier sets the timing of human neuronal maturation. Nature 626626, 881–890 (2024). This study presents dentification of a set of chromatin modifiers orchestrating neuronal maturation tempo.ArticleCASGoogle Scholar
  151. Wang, J., Weatheritt, R. & Voineagu, I. Alu-minating the mechanisms underlying primate cortex evolution. Biol. Psychiatry92, 760–771 (2022). ArticlePubMedGoogle Scholar
  152. Nesta, A. V., Tafur, D. & Beck, C. R. Hotspots of human mutation. Trends Genet.37, 717–729 (2021). ArticleCASPubMedGoogle Scholar
  153. Suntsova, M. V. & Buzdin, A. A. Differences between human and chimpanzee genomes and their implications in gene expression, protein functions and biochemical properties of the two species. BMC Genomics21, 535 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
  154. Saitou, M. & Gokcumen, O. An evolutionary perspective on the impact of genomic copy number variation on human health. J. Mol. Evol.88, 104–119 (2020). ArticleADSCASPubMedGoogle Scholar
  155. Dennis, M. Y. & Eichler, E. E. Human adaptation and evolution by segmental duplication. Curr. Opin. Genet. Dev.41, 44–52 (2016). ArticleCASPubMedPubMed CentralGoogle Scholar
  156. Waterson, R. H., Lander, E. S. & Wilson, R. K. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature437, 69–87 (2005). ArticleGoogle Scholar
  157. Nurk, S. et al. The complete sequence of a human genome. Science376, 44–53 (2022). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  158. An, N. A. et al. De novo genes with an lncRNA origin encode unique human brain developmental functionality. Nat. Ecol. Evol.7, 264–278 (2023). PubMedPubMed CentralGoogle Scholar
  159. Vakirlis, N., Vance, Z., Duggan, K. M. & McLysaght, A. De novo birth of functional microproteins in the human lineage. Cell Rep.41, 111808 (2022). ArticleCASPubMedPubMed CentralGoogle Scholar
  160. Levchenko, A., Kanapin, A., Samsonova, A. & Gainetdinov, R. R. Human accelerated regions and other human-specific sequence variations in the context of evolution and their relevance for brain development. Genome Biol. Evol.10, 166–188 (2017). ArticlePubMed CentralGoogle Scholar
  161. Franchini, L. F. & Pollard, K. S. Genomic approaches to studying human-specific developmental traits. Development142, 3100–3112 (2015). ArticleCASPubMedGoogle Scholar
  162. Pinson, A. et al. Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals. Science377, eabl6422 (2022). ArticleCASPubMedGoogle Scholar
  163. Suzuki, I. K. et al. Human-specific NOTCH2NL genes expand cortical neurogenesis through Delta/Notch regulation. Cell173, 1370–1384.e16 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  164. Fiddes, I. T. et al. Human-specific NOTCH2NL genes affect Notch signaling and cortical neurogenesis. Cell173, 1356–1369.e22 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  165. Schmidt, E. R. E. et al. A human-specific modifier of cortical connectivity and circuit function. Nature599, 640–644 (2021). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  166. Libé-Philippot, B. et al. Human synaptic neoteny requires species-specific balancing of SRGAP2–SYNGAP1 cross-inhibition. Preprint at bioRxiv 10.1101/2023.03.01.530630 (2023).
  167. Lucas, B. & Hardin, J. Mind the (sr)GAP—roles of Slit–Robo GAPs in neurons, brains and beyond. J. Cell Sci.130, 3965–3974 (2017). ArticleCASPubMedPubMed CentralGoogle Scholar
  168. Charrier, C. et al. Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell149, 923–935 (2012). This study demonstrates that the human-specific geneSRGAP2Cinhibits SRGCAP2A activity, delaying spine maturation. ArticleCASPubMedPubMed CentralGoogle Scholar
  169. Dennis, M. Y. et al. Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication. Cell149, 912–922 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  170. Heide, M. et al. Human-specific ARHGAP11B increases size and folding of primate neocortex in the fetal marmoset. Science369, 546–550 (2020). ArticleADSCASPubMedGoogle Scholar
  171. Florio, M. et al. Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science347, 1465–1470 (2015). ArticleADSCASPubMedGoogle Scholar
  172. Franchini, L. F. & Pollard, K. S. Human evolution: the non-coding revolution. BMC Biol.15, 89 (2017). ArticlePubMedPubMed CentralGoogle Scholar
  173. Romero, I. G., Ruvinsky, I. & Gilad, Y. Comparative studies of gene expression and the evolution of gene regulation. Nat. Rev. Genet.13, 505–516 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  174. Sholtis, S. J. & Noonan, J. P. Gene regulation and the origins of human biological uniqueness. Trends Genet.26, 110–118 (2010). ArticleCASPubMedGoogle Scholar
  175. Noonan, J. P. Regulatory DNAs and the evolution of human development. Curr. Opin. Genet. Dev.19, 557–564 (2009). ArticleCASPubMedGoogle Scholar
  176. Shibata, M. et al. Regulation of prefrontal patterning and connectivity by retinoic acid. Nature598, 483–488 (2021). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  177. Shibata, M. et al. Hominini-specific regulation of CBLN2 increases prefrontal spinogenesis. Nature598, 489–494 (2021). Refs. 176 and 177 report molecular mechanisms of increased connectivity in the prefrontal cortex in humans. ArticleADSCASPubMedPubMed CentralGoogle Scholar
  178. Jeong, H. et al. Evolution of DNA methylation in the human brain. Nat. Commun.12, 2021 (2021). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  179. Kozlenkov, A. et al. Evolution of regulatory signatures in primate cortical neurons at cell-type resolution. Proc. Natl Acad. Sci. USA117, 28422–28432 (2020). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  180. Xu, C. et al. Human-specific features of spatial gene expression and regulation in eight brain regions. Genome Res.28, 1097–1110 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  181. Babbitt, C. C., Haygood, R., Nielsen, W. J. & Wray, G. A. Gene expression and adaptive noncoding changes during human evolution. BMC Genomics18, 435 (2017). ArticlePubMedPubMed CentralGoogle Scholar
  182. Vermunt, M. W. et al. Epigenomic annotation of gene regulatory alterations during evolution of the primate brain. Nat. Neurosci.19, 494–503 (2016). ArticleCASPubMedGoogle Scholar
  183. Reilly, S. K. et al. Evolutionary changes in promoter and enhancer activity during human corticogenesis. Science347, 1155–1159 (2015). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  184. Shibata, Y. et al. Extensive evolutionary changes in regulatory element activity during human origins are associated with altered gene expression and positive selection. PLoS Genet.8, e1002789 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  185. Zeng, J. et al. Divergent whole-genome methylation maps of human and chimpanzee brains reveal epigenetic basis of human regulatory evolution. Am. J. Hum. Genet.91, 455–465 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  186. Oldham, M. C., Horvath, S. & Geschwind, D. H. Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proc. Natl Acad. Sci. USA103, 17973–17978 (2006). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  187. Prescott, S. L. et al. Enhancer divergence and cis-regulatory evolution in the human and chimp neural crest. Cell163, 68–83 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  188. Mangan, R. J. et al. Adaptive sequence divergence forged new neurodevelopmental enhancers in humans. Cell185, 4587–4603.e23 (2022). ArticleCASPubMedPubMed CentralGoogle Scholar
  189. Hubisz, M. J. & Pollard, K. S. Exploring the genesis and functions of Human Accelerated Regions sheds light on their role in human evolution. Curr. Opin. Genet. Dev.29, 15–21 (2014). ArticleCASPubMedGoogle Scholar
  190. Pollard, K. S. et al. An RNA gene expressed during cortical development evolved rapidly in humans. Nature443, 167–172 (2006). This study reports on the identification of HARs, the fastest evolving regulatory elements in the genome. ArticleADSCASPubMedGoogle Scholar
  191. Whalen, S. & Pollard, K. S. Enhancer function and evolutionary roles of human accelerated regions. Annu. Rev. Genet.56, 423–439 (2022). ArticleCASPubMedPubMed CentralGoogle Scholar
  192. Whalen, S. et al. Machine learning dissection of human accelerated regions in primate neurodevelopment. Neuron111, 857–873.e8 (2023). ArticleCASPubMedPubMed CentralGoogle Scholar
  193. Pizzollo, J., Zintel, T. M. & Babbitt, C. C. Differentially active and conserved neural enhancers define two forms of adaptive noncoding evolution in humans. Genome Biol. Evol.14, evac108 (2022). ArticlePubMedPubMed CentralGoogle Scholar
  194. Uebbing, S. et al. Massively parallel discovery of human-specific substitutions that alter enhancer activity. Proc. Natl Acad. Sci. USA118, e2007049118 (2021). ArticleCASPubMedGoogle Scholar
  195. Girskis, K. M. et al. Rewiring of human neurodevelopmental gene regulatory programs by human accelerated regions. Neuron109, 3239–3251.e7 (2021). ArticleCASPubMedPubMed CentralGoogle Scholar
  196. Weiss, C. V. et al. The cis-regulatory effects of modern human-specific variants. eLife10, e63713 (2021). ArticleCASPubMedPubMed CentralGoogle Scholar
  197. Reilly, S. K. & Noonan, J. P. Evolution of gene regulation in humans. Annu. Rev. Genomics Hum. Genet.17, 45–67 (2014). ArticleGoogle Scholar
  198. Boyd, J. L. et al. Human–chimpanzee differences in a FZD8 enhancer alter cell-cycle dynamics in the developing neocortex. Curr. Biol.25, 772–779 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  199. McLean, C. Y. et al. Human-specific loss of regulatory DNA and the evolution of human-specific traits. Nature471, 216–219 (2011). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  200. Kostka, D., Hahn, M. W. & Pollard, K. S. Noncoding sequences near duplicated genes evolve rapidly. Genome Biol. Evol.2, 518–533 (2010). ArticlePubMedPubMed CentralGoogle Scholar
  201. Johansson, P. A. et al. A cis-acting structural variation at the ZNF558 locus controls a gene regulatory network in human brain development. Cell Stem Cell29, 52–69.e8 (2022). ArticleCASPubMedGoogle Scholar
  202. Keough, K. C. et al. Three-dimensional genome rewiring in loci with human accelerated regions. Science380, eabm1696 (2023). ArticleCASPubMedPubMed CentralGoogle Scholar
  203. Berto, S. & Nowick, K. Species-specific changes in a primate transcription factor network provide insights into the molecular evolution of the primate prefrontal cortex. Genome Biol. Evol.10, evy149 (2018). ArticleGoogle Scholar
  204. Florio, M. et al. Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex. eLife7, e32332 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  205. Aughey, G. N., Forsberg, E., Grimes, K., Zhang, S. & Southall, T. D. NuRD‐independent Mi‐2 activity represses ectopic gene expression during neuronal maturation. EMBO Rep.24, e55362 (2023). ArticleCASPubMedPubMed CentralGoogle Scholar
  206. Salamon, I. & Rasin, M.-R. Evolution of the neocortex through RNA-binding proteins and post-transcriptional regulation. Front. Neurosci.15, 803107 (2022). ArticlePubMedPubMed CentralGoogle Scholar
  207. Duffy, E. E. et al. Developmental dynamics of RNA translation in the human brain. Nat. Neurosci.25, 1353–1365 (2022). ArticleCASPubMedPubMed CentralGoogle Scholar
  208. Li, M. & Larsen, P. A. Primate-specific retrotransposons and the evolution of circadian networks in the human brain. Neurosci. Biobehav. Rev.131, 988–1004 (2021). ArticleCASPubMedGoogle Scholar
  209. Ibarra, I. L. et al. Comparative chromatin accessibility upon BDNF stimulation delineates neuronal regulatory elements. Mol. Syst. Biol.18, e10473 (2022). ArticleCASPubMedPubMed CentralGoogle Scholar
  210. Beagan, J. A. et al. Three-dimensional genome restructuring across timescales of activity-induced neuronal gene expression. Nat. Neurosci.23, 707–717 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
  211. Tyssowski, K. M. et al. Different neuronal activity patterns induce different gene expression programs. Neuron98, 530–546.e11 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  212. Su, Y. et al. Neuronal activity modifies the chromatin accessibility landscape in the adult brain. Nat. Neurosci.20, 476–483 (2017). ArticleCASPubMedPubMed CentralGoogle Scholar
  213. Kim, T.-K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature465, 182–187 (2010). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  214. Hergenreder, E. et al. Combined small-molecule treatment accelerates maturation of human pluripotent stem cell-derived neurons. Nat. Biotechnol.https://doi.org/10.1038/s41587-023-02031-z (2024).
  215. Kebschull, J. M. et al. Cerebellar nuclei evolved by repeatedly duplicating a conserved cell-type set. Science370, eabd5059 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
  216. Homman‐Ludiye, J. & Bourne, J. A. The medial pulvinar: function, origin and association with neurodevelopmental disorders. J. Anat.235, 507–520 (2019). ArticlePubMedPubMed CentralGoogle Scholar
  217. Biddy, B. A. et al. Single-cell mapping of lineage and identity in direct reprogramming. Nature564, 219–224 (2018). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  218. Saunders, A. et al. Ascertaining cells’ synaptic connections and RNA expression simultaneously with barcoded rabies virus libraries. Nat. Commun.13, 6993 (2022). ArticleADSPubMedPubMed CentralGoogle Scholar
  219. Yuan, L., Chen, X., Zhan, H., Gilbert, H. L. & Zador, A. M. Massive multiplexing of spatially resolved single neuron projections with axonal BARseq. Preprint at Biorxivhttps://doi.org/10.1101/2023.02.18.528865 (2023).
  220. Benavides-Piccione, R. et al. Differential structure of hippocampal CA1 pyramidal neurons in the human and mouse. Cereb. Cortex30, 730–752 (2020). PubMedGoogle Scholar
  221. Atamian, A. et al. Human cerebellar organoids with functional Purkinje cells. Cell Stem Cell31, 39–51.e6 (2024). ArticleCASPubMedGoogle Scholar
  222. Chen, Y. et al. Generation of advanced cerebellar organoids for neurogenesis and neuronal network development. Hum. Mol. Genet.32, 2832–2841 (2023). ArticleCASPubMedGoogle Scholar
  223. Pellegrini, L. et al. Human CNS barrier-forming organoids with cerebrospinal fluid production. Science369, eaaz5626 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
  224. Birey, F. et al. Assembly of functionally integrated human forebrain spheroids. Nature545, 54–59 (2017). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  225. Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature596, 211–220 (2021). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  226. Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat. Rev. Genet.22, 627–644 (2021). ArticleCASPubMedPubMed CentralGoogle Scholar
  227. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature523, 486–490 (2015). ArticleADSCASPubMedPubMed CentralGoogle Scholar
  228. Zhu, K. et al. Multi-omic profiling of the developing human cerebral cortex at the single-cell level. Sci. Adv.9, eadg3754 (2023). ArticleCASPubMedPubMed CentralGoogle Scholar
  229. Domcke, S. et al. A human cell atlas of fetal chromatin accessibility. Science370, eaba7612 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
  230. Pesce, L. et al. 3D molecular phenotyping of cleared human brain tissues with light-sheet fluorescence microscopy. Commun. Biol.5, 447 (2022). ArticleCASPubMedPubMed CentralGoogle Scholar
  231. Rodriguez-Gatica, J. E. et al. Imaging three-dimensional brain organoid architecture from meso- to nanoscale across development. Development149, dev200439 (2022). ArticleCASPubMedGoogle Scholar
  232. Michalska, J. M. et al. Uncovering brain tissue architecture across scales with super-resolution light microscopy. Preprint at bioRxivhttps://doi.org/10.1101/2022.08.17.504272 (2022).
  233. Sarkar, D. et al. Revealing nanostructures in brain tissue via protein decrowding by iterative expansion microscopy. Nat. Biomed. Eng.6, 1057–1073 (2022). ArticleCASPubMedPubMed CentralGoogle Scholar
  234. Rakotoson, I. et al. Fast 3-D imaging of brain organoids with a new single-objective planar-illumination two-photon microscope. Front. Neuroanat.13, 77 (2019). ArticleCASPubMedPubMed CentralGoogle Scholar
  235. Krafft, P. R. et al. Etiology of stroke and choice of models. Int. J. Stroke7, 398–406 (2012). ArticlePubMedPubMed CentralGoogle Scholar
  236. Benavides-Piccione, R., Ballesteros-Yáñez, I., DeFelipe, J. & Yuste, R. Cortical area and species differences in dendritic spine morphology. J. Neurocytol.31, 337–346 (2002). ArticlePubMedGoogle Scholar
  237. Mikula, S., Trotts, I., Stone, J. M. & Jones, E. G. Internet-enabled high-resolution brain mapping and virtual microscopy. NeuroImage35, 9–15 (2007). ArticlePubMedGoogle Scholar
  238. Barrett, R. D. H. & Hoekstra, H. E. Molecular spandrels: tests of adaptation at the genetic level. Nat. Rev. Genet.12, 767–780 (2011). ArticleCASPubMedGoogle Scholar

Acknowledgements

The authors thank their colleagues for inspiring scientific discussions. This work was supported by the Netherlands Organisation for Scientific Research (NWO-Rubicon, 019.211EN.032ß) and an European Molecular Biology Organisation non-stipendiary postdoctoral fellowship (EMBO, ALTF 845–2021) to F.W.L.; an Klingenstein-Simons fellowship, a Simons Foundation BTI award, and an NIH BRAIN Initiative grant (UM1MH130981) to F.M.K.; the Gladstone Institutes, Chan Zuckerberg Biohub San Fransisco and the NIMH (U01-MH116438) to K.S.P.; and the Medical Research Council (MC_UP_1201/9) and the European Research Council (ERC-STG, 757710) to M.A.L.